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Abstract—This paper extends prior work in generating two
dimensional micro for Real-Time Strategy games to three di-
mensions. We extend our influence map and potential fields
representation to three dimensions and compare two hill-climbers
with a genetic algorithm on the problem of generating high
performance influence map, potential field, and reactive control
parameters that control the behavior of units in an open source
Real-Time Strategy game. Results indicate that genetic algorithms
evolve better behaviors for ranged units that inflict damage
on enemies while kiting to avoid damage. Additionally, genetic
algorithms evolve better behaviors for melee units that concen-
trate firepower on selective enemies to decrease the opposing
army’s effectiveness. Evolved behaviors, particularly for ranged
units, generalize well to new scenarios. Our work thus provides
evidence for the viability of an influence map and potential fields
based representation for reactive control algorithms in games, 3D
simulations, and aerial vehicle swarms.

I. INTRODUCTION

Real-Time Strategy (RTS) games are a sub-genre of video
games where players gather resources to build units to fight
and defeat adversaries. Players collect resources to power up an
economy that can then produce military units used to destroy
opponent units and economy. RTS games thus incorporate
elements of strategic economic development and tactical battle
management that adds complexity to game play. As such,
many interesting CI and AI research challenges exist within the
game genre [1], [2], [3]. First, dynamic environments within
RTS games mean that we need real-time planning on several
levels - strategic, tactical, and reactive. Second, a “fog of war”
hides enemy disposition and strategy, therefore players have
to scout to gain information to formulate effective strategies.
Third, players must learn and exploit their opponents’ playing
“style” quickly in order to gain the advantage in future games.
Fourth, players must employ spatial and temporal reasoning to
coordinate effective unit formations and time-sensitive actions
on a tactical and strategic level.

These challenges lead to two broad areas of RTS AI
research that encapsulate game play elements in RTS games,
macro and micro. Macro refers more to long term decision
making dealing with resource management and creating a
strong economy. A stronger economy enables more production
of military units that battle the opponent. Micro refers to
controlling small sets of such military units in combat. Good
micro minimizes damage received by friendly units while max-
imizing damage dealt to enemy units. Good macro combined
with good micro wins RTS games. Often, an RTS game may
have multiple skirmishes between opposing groups of units
and superior micro during a single skirmish may change the
entire course of the game.

Influence maps (IMs) and potential fields (PFs) techniques

have been used, in the past, for spatial reasoning and unit ma-
neuvering [4]. IMs map a number to each cell of a discretized
game map and the number can indicate areas of interests
within the level to the game AI [5], [6]. In this paper, we
extend influence maps to 3D as a volumetric grid over 3D
space. Each grid volume, or cell, contains a numerical value
indicating the influence of nearby entities. Figure 1 shows the
three-dimensional (3D) influence map of enemy units. Each
IM cell value, computed by an IM function, depends on two
parameters, a weight, corresponding to the influence of the
entity occupying the cell and a range for this influence. The
final value at a cell is the sum of the influences of all entities
that have that cell within their range. Assume we design the
IM function to provide low values for enemy influence and
high values for friendly influence, a very low value in certain
cells reveals that there is heavy enemy presence and therefore
the area corresponding to those cells is dangerous for our units.

Fig. 1: A 3D influence map showing color coded influence
over a map. Pink values are higher than blue which are higher
than white. The white areas with the lowest values are thus
areas to be avoided by opponents.

Potential field approaches from robotics have been exten-
sively used in guiding group movement in RTS and other
games [7], [8], [9]. They enable real-time, cohesive movement,
with collision avoidance and have been used to generate good
positioning for attack and defense. We extend prior work with
2D potential fields to three dimensions and evolve the (now)
3D parameters that define attractive and repulsive potential
fields for game units.

In our experiments, we use a 3D influence map generated
from enemy units to tell our units where to go and use two
3D potential fields to control unit navigation. Earlier work
has shown that influence maps and potential fields provide
representations that can be used by parameterized, but simple,
reactive control algorithms to generate high performance 2D



micro [9]. In this work, good kiting, targeting, and fleeing
behaviors evolved from the tuning of 3D IM, 3D PF, and 3D
reactive algorithm parameters.

This paper extends Liu’s 2D work to 3D [9]. Specifically,
we use and compare genetic algorithms (GAs) and two hill
climbers (HCs) on the problem of finding good 3D influence
map, 3D potential field, and reactive control parameters that
lead to high performance 3D micro. We generate and compare
micro performance in our simulation environment with units
similar to Zealots, a close-in, melee unit, and Vultures, a fast,
ranged unit, in StarCraft. Our Zealots and Vultures have the
ability to move in three dimensions, that is, units can fly in
3D space. We also report on micro performance on scenar-
ios not used during search to investigate how our approach
generalizes. Finally, we use FastEcslent, an open source game
engine that supports full 3D unit movement in games [10].
We chose FastEcslent in place of the popular StarCraft: Brood
Wars API (BWAPI) [11] in order to change the physics and
enable full 3D movement. Not only do we want to move to
3D game-physics, but we would like to investigate the effect
of more realistic physics on evolved “micro” performance for
real-world unmanned aerial vehicles. Figure 2 shows a screen
shot of in-game combat between two teams of units within
FastEcslent.

Fig. 2: Units are able to fly and fight enemies in 3D within
FastEcslent. Note that although the influence map appears 2D,
only the bottom layer of influence map cells is being rendered
to provide an unobstructed view of the skirmish.

Preliminary results indicate that both GAs and HCs are able
to evolve competent 3D micro. Ranged units (Vultures) learn
to kite against melee units (Zealots) in three dimensions and
spread firepower by moving to split the enemy unit group into
smaller subgroups and thus avoid being surrounded. Ranged
units evolve conservative behaviors that preserve health and
do not engage in risky tactics. Melee units, when trained
against evolved ranged units, learn to concentrate firepower
on individual ranged units and diminish the damage dealt
by the enemy unit group. Results also show that GAs more
consistently produce higher quality solutions than HCs. That is,
although hill-climbers occasionally generate high performance
micro in shorter time, they do so unreliably. On the other hand,
GAs may take more time to produce near-optimal solutions but
do so more reliably.

The remainder of this paper is structured as follows.
Section II discusses related work in RTS AI research, as well
as common micro implementations and approaches. Section III

explains our simulation environment, the design of our AI
player, and detailed IM and PF representation for generated 3D
micro. Section IV shows preliminary results and compares the
solutions generated by the search algorithms and investigates
the applicability of solutions in new scenarios. The final section
draws conclusions and explores future work.

II. RELATED WORK

Numerous techniques have been used in the design of RTS
AI players[3]. However, we focus on work related to micro
management including spatial reasoning and unit movement.
In this context, influence maps have been a popular technique
for spatial reasoning in RTS and other games. Sweeter et al.
designed a game agent that used IMs and cellular automata to
model the game environment and assist the agent in decision-
making within their EmerGEnT game world [5]. Their game
agent was capable of pursuing a target while responding
to both user actions and natural phenomenon. Bergsma and
Spronck implemented IMs to produce adaptive AI for combat
in turn-based strategy games [6]. Their adaptive AI evolved
high level decision making using an evolutionary algorithm.
Avery et al. used IMs to co-evolve tactics for a group of
boats to move autonomously and attack enemy units in co-
ordination [12]. Their technique generated an IM for each
unit in order to produce different unit navigation; however,
their technique was computationally intensive when increasing
the number of units in-game. Preuss et al. generated group
movement by using flocking in combination with IM path
finding within the RTS game Glest [13], [14]. Their approach
found improvements in group performances across each of
their game scenarios. For our research we evolve and use an
enemy IM to collect spatial information on enemy disposition
and to direct friendly units to good locations from which
to launch attacks. Potential fields then guide unit movement
during attacks.

PFs were first introduced by Ossama Khatib as a compu-
tationally simple approach to real-time obstacle avoidance for
mobile robots [7]. This method was then extensively used for
collision avoidance among multiple entities [15], [16], [17].
In games, most work related to PFs involve spatial navigation
and collision avoidance [18]. Multi-agent potential fields were
used by Hagelbäck and Johansson for unit navigation and
obstacle avoidance in RTS games [8]. Their research involved
the development of an AI player that incorporated PFs at
the tactical and reactive control level [19]. Early work in our
lab applied spatial reasoning techniques with IMs to evolve a
complete RTS game player [20]. More recent work combined
IMs and PFs as a basis representation to generate micro
position and movement tactics [9], [21], [4]. In this paper,
we extend Liu’s reactive control algorithm for micro to use
3D IMs and PFs.

Previous work by Uriarte and Ontañón implemented kiting
using IMs for group positioning [22]. Their approach was
incorporated into the NOVA bot, which competed in the
annual StarCraft AI Competition. Gunnerud et al. developed
a hybrid system that combines case-base reasoning and rein-
forcement learning which improves itself while playing an RTS
game. The hybrid system learned effective targeting behaviors
specific for a given scenario [23]. Wender et al. examined
the suitability of reinforced learning algorithms for executing



effective micro in the RTS game StarCraft: Brood Wars [24].
Their results indicate that reinforcement learning algorithms
are capable of developing strategies for winning small scale
battle while learning actions such as “Fight”, “Retreat”, and
“Idle” in combat. Limitations exist in their implementation
however, as the default StarCraftBW AI was the opponent
and performance was evaluated on a limited set of tasks. In
this work, we extend and use Liu’s parameterized stateless
distributed control algorithm which tries to maximize damage
to the enemy while minimizing the amount of damage received
by friendly units. With appropriate evolved parameters, the al-
gorithm generated 2D kiting, targeting, and fleeing. We extend
the algorithm to work in 3D to investigate the evolution of
similar behaviors. Although many RTS games do not support
full 3D movement, our work does, and as such may also be
applicable to user interaction with, and control of, real 3D
unmanned aerial vehicle swarms.

III. METHODOLOGY

We used FastEcslent, an open-source and research-oriented
game engine built on OGRE [25] that supports full 3D entity
movement. Since graphics and user interaction run within a
separate thread, FastEcslent can run without graphics or inter-
action, enabling easier integration with heuristic search algo-
rithms. On the other hand, even when copying unit parameters
from StarcraftBW, trying to replicate StarCraft movement and
combat exactly is non-trivial. However, exact duplication is not
necessary to evaluate our approach and to investigate whether
we can evolve kiting and other well know micro behaviors
during combat. With that caveat, our skirmish scenarios built
within FastEcslent reflect combat found in StarCraftBW by
replicating StarCraft units and their respective properties. In
addition, we implement 3D physics and extend our influence
map and potential field implementations to 3D. Figure 2 shows
an in-game screen shot of a FastEcslent skirmish scenario be-
tween two opposing sides. In our scenario, each player controls
a group of units initially positioned in opposite corners. In our
experimental scenarios, the map does not contain obstacles or
neutral entities. Second, FastEcslent entity properties reflect
those of default StarCraft units, more specifically, Vultures and
Zealots. A Vulture is a ranged unit with low hit-points but high
movement speed, proving to be effective when outmaneuvering
slower enemy units. A Zealot is a melee unit (low attack range)
that has more hit-points than a Vulture but is comparatively
slower. Table I details the parameters for both Vultures and
Zealots in FastEcslent. Lastly, there is no fog of war since we
are only looking at skirmishes, not a complete game. We also
implemented a baseline opponent AI that behaves similar to the
default StarCraft AI to control enemy Zealots. The maximum
running time for our scenario is 6000 frames, approximately
one minute at normal game speed. We created a skirmish
scenario with four 3D moving Vultures on side RED (our side)
and fifty 3D moving Zealots on side BLUE.

A. Influence Maps and Potential Fields

We represent group behavior as a combination of one
enemy influence map, attractor and repulsor potential fields,
and a set of reactive control parameters. The IM provides
possible move-to locations and the PFs control movement to
locations provided by the IM. Two parameters, the weight

TABLE I: Unit parameters defined in FastEcslent

Parameter Vulture Zealot

Hit-points 80 160

Size 45×10×12 18×3×6

MaxSpeed 64 40

MaxDamage 20 16

Weapon’s Range 256 224

Weapon’s Cooldown 1.1 1.24

and range specify the IM. Since computation time also
depends on the number of IM cells in the map, we use a
cell size of 64× 64× 64 pixels in the game map. If an enemy
unit occupies a cell, the value of that cell and all neighboring
cells in range get weight added to their current value.
We call this the SumIM and weight and range are the
evolvable parameters. Since we are evolving micro in a full
3D environment in this paper, influence maps and potential
fields extend to three dimensions as well. However, extending
IMs from 2D to 3D increases the computational complexity
of their implementation. The original 2D IM was of O(MN)
complexity where M is the number of IM cells on the x-axis
and N is the number of IM cells on the y-axis. Considering
the number of cells for the original 2D implementation of
FastEcslent (64 × 64), 4096 cells updates were needed to
update the IM. Since entities now move in three dimensions,
the introduction of the z-axis increases the computational
complexity to O(MNL), where L is the number of IM cells
on the z-axis. However, our IM implementation updates IM
cells over multiple frames within a total of three seconds and
does not noticeably slow down simulations or adversely affect
unit behavior.

Equation 1 shows a standard potential field function, where
F describes the potential force applied to the entity, with
D being the 3D distance from the enemy entity. The force
direction is in the direction of the vector difference from the
enemy entity and c and e are evolvable parameters.

F = cDe (1)

We use one attractor PF and one repulsor PF of the form
described by Equation 1 to control entity movement in-game.
The attractor force guides a unit towards its target. The repulsor
force repels units from other units or obstacles. Normally it is
stronger than the attractor force at short distances while being
weaker at long distances.

~PF = caD
ea + crD

er (2)

where ca and ea are attractor force parameters, and cr and er
parameters for the replusor force.

B. Reactive Controls

Along with group positioning and unit navigation, we
represented our reactive control behaviors in a way that our
search algorithms can tune. Our reactive control behaviors in-
cluded micro behaviors frequently used by professional human



Algorithm 1 Reactive Control Algorithm
UpdatePosition();
nearbyUnits ← FindNearbyUnits(enemies, Rnt);
highFocusUnit ← GetHighFocusUnit(nearbyUnits);

// Targeting
if lowUnit.healthPercentage < HPef then

Target ← lowUnit
else if GetNumberOfAttackers(highFocusUnit) > 0 then

Target ← highFocusUnit
else

Target ← closestUnit
end if

// Kiting
if Weapon.cooldownTimer < (St * Weapon.cooldownRate) then

return
end if
if Weapon.cooldownTimer ≤ 0 then

MoveTowardsAndAttack(Target)
else

KitingPos ← IM.GetKitingPos(position, Target.position, Dkb)
if distanceFrom(Target) < (Target.Weapon.range + Dk) then

if Weapon.range > Target.Weapon.range then
MoveTowards(KitingPos)

else if BeingTargetedBy(enemies) and healthPercentage <
HPfb then

MoveTowards(Target);
end if

end if
end if

players: kiting, targeting, and fleeing. Algorithm 1 specifies the
algorithm with the targeting and kiting portions outlined.

Targeting selects and concentrates fire on a specific unit
depending on candidate enemy unit hit-points and distance.
Each of our units selects the nearest enemy unit tclosest as a
possible target. Within a distance Rnt from tclosest, our unit
will select a target based on prioritized criteria. The highest
priority is tlowhp, the enemy with the lowest hit-points below
the evolvable threshold: HPef . Next in priority is tfocus, the
enemy unit being targeted by the most friendly units within
Rnt relative to tclosest. The third prioritized criteria is tclosest,
the nearest enemy unit. Kiting serves as a useful hit-run-
repeat tactic for units with higher speed and attack range.
Units strike quickly and retreat back to avoid being attacked
by the slower units. During kiting, our unit moves towards
and attacks its target as soon as the unit’s weapon is ready,
which is dependent on St. A unit will begin kiting if the
unit’s weapon is not ready and if the distance between the
unit and its target is less than Dk. The unit moves back
(away from the target) to a kitingPosition which is computed
by the function getKitingPositionFromIM(Dkb) from the
SumIM. Dkb represents the number of cells away from the
target’s cell. If Cellt is the IM cell containing our target,
getKitingPositionFromIM(Dkb) finds a neighboring IM
cell with the lowest value. We set this new IM cell to Cellt
and then repeat this process of finding a new Cellt, Dkb

times. The algorithm then uses Cellt as the kitingPosition
to move towards. Finally, fleeing to avoid further damage
gets triggered when the unit’s hit-points fall below below a
threshold, represented by HPfb. HPfb controls this “fleeing”

behavior.

We encode 12 micro parameters, consisting of 6 reactive
control parameters as well as 6 IM and PF parameters, into
a 51-bit binary string that represent a chromosome for our
search algorithms. Our search algorithms then decode these
encoded binary strings into a set of parameters as shown
in [21]. FastEcslent receives this decoded set of parameters
and uses them to run the skirmish. When finished, FastEcslent
returns the resulting score and fitness to the calling search
algorithm.

C. Fitness Evaluation

The goal of our scenario is to maximize enemy unit dam-
age while minimizing friendly unit damage. The evaluation
function to compute fitness F reflects this:

F = TDeu + (HPfu × 400) (3)

where fitness is calculated at the end of the scenario. TDeu

represents the total damage given to enemy units, while
HPfu is the sum of remaining hit-points of all friendly
units. According to our prior experiments, we use the scalar
value 400 for multiplying HPfu to give unit hit-points more
weight than enemy unit damage as a means to encourage
health conservation and more evasive kiting behaviors. This is
somewhat arbitrary and an alternative approach in our current
research, is to use a multi-objective evolutionary algorithms
and treat damage done and damage received as two criteria in
a pareto-optimization setting. Note also that the same fitness
can be found in multiple ways. For example, a fitness of 7200
can describe an outcome of 45 enemy units destroyed with
no friendly units remaining or an outcome of 40 enemy units
destroyed and two friendly units alive with full hit-points. The
fitness is used by our search algorithms to bias search.

D. Hill-climbers

The Bit-Setting Optimization (BSO) hill climber searches
a locally optimal solution in the search space by sequentially
flipping each bit and saving the better fitness solution when
it is found [26]. BSO searches a subset of the search space
based on the initial point set by the random seed. In order
to make results obtained from GAs and HCs comparable, the
maximum number of evaluations made by all algorithms are
set to the same number, 600. The BSO starts from the left
again when it reaches the end of the chromosome. The Random
Flip Optimization (RFO), an alternative hill-climber, randomly
chooses a bit in the randomly generated initial chromosome
and flips it. This is repeated 600 times.

E. Genetic Algorithm

We use an elitist GA in our experiments. Assuming the
population size is N , during selection our elitist GA selects
the N best individuals from the combined parent and offspring
populations (2N ) to create the next generation after recombi-
nation. We implemented a parallel version of this elitist GA
where evaluations are done in parallel to significantly speed up
our runs. For our scenarios, the population size was 20, run
for 30 generations for a total of 600 evaluations. In order to
relate our experiment to that of the original 2D implementation,
we use the same crossover and mutation rate for our GA.



The probability of our two-point crossover is 88% and bit-flip
mutation probability is 0.01. Standard roulette wheel selection
is used to select chromosomes for crossover. These operator
choices and GA parameter values were empirically determined
to work well.

IV. RESULTS AND DISCUSSION

Unit AI behavior within FastEcslent is deterministic, mean-
ing that a given set of parameters guarantees the same fitness
every time a scenario runs. The FastEcslent game engine does
not add any noise to picking a targeting, probability of hitting
the target, or in the amount of damage done. We ran our
scenarios with 30 random seeds for each search algorithm.

A. Search Algorithm Results

In the skirmish scenario with 4 friendly Vultures vs. 50
enemy Zealots, all three search algorithms were able to evolve
high fitness 3D micro within 600 evaluations. Ranged units
evolved kiting behaviors that were successful in destroying
numerous enemy units while avoiding damage. According to
the fitness function, the theoretical maximum score for our
scenario is 9600. This is obtained when eliminating all of the
enemy units (8000) with no friendly units receiving damage
(1600). Figure 3 illustrates the average fitness from 30 runs.

Fig. 3: Average performance of GA, BSO, and RFO for our
scenario with 30 different random seeds. X-axis represents
number of evaluations and Y-axis shows the average fitness
over 30 runs.

The average fitness of the BSO shown in Figure 3 climbed
quickly in the first 100 evaluations which seemed to indicate
that the BSO quickly finds (local) optima. The final average
score for BSO, 7904 was the second highest average score
among the three tested algorithms. The best fitness over 30 runs
was 9200, indicating that the BSO sometimes did very well
and this solution destroyed 48 of the 50 enemy Zealots but did
receive some damage. The average fitness of the RFO shown in
Figure 3 did not climb as quickly as the other search algorithms
and RFO usually did worse than the others. This was reflected
in the final average score of 7556 attained over the 30 RFO
runs, the worst among the three tested algorithms. On our
scenario, RFO seemed less reliable than BSO. However, the
highest fitness obtained by RFO was 9020 which indicated
that RFO also has the potential to find relatively high quality

solutions. The solution with a score of 9020 destroyed 43 units
but received more damage than the best solution found by the
BSO.

The average fitness curves of the GA shown in Figure 3
rise smoothly and end higher than the averages of both HCs.
The average over 30 runs of the maximum fitness in the GA
population (GA Max) was also consistently higher than the
quick climbing BSO. This indicated that the GA was more
reliably and more quickly find high fitness solutions. The final
average fitness for the GA was 8745.3 which was the highest
average among the three tested algorithms. The highest fitness
obtained by the GA was 9260 which was also the highest
fitness found by any algorithm. This solution inflicted 7660
damage, destroying 42 of the 50 Zealots while not receiving
any damage. The solution produced by the GA destroyed
the least amount of Zealots out of all search algorithms, but
displayed near-optimal kiting abilities by avoiding any damage
whatsoever.

Fig. 4: For our scenario, the standard deviation showed by the
error bars tells that GA on average produced more reliable
solutions after 600 evaluations.

If we define a fitness of 8000 as our threshold for good
performance, we can see that the GA performed better than
either HC. The GA found solutions above 8000 every run. The
BSO could only find solutions above a score of 8000 on 16 out
of the 30 runs while the RFO found solutions above a score
of 8000 on 13 of the 30 runs. The differences in final average
fitness between the BSO and GA were statistically significant
with a one-tailed P < 0.0001. Additionally, Figure 4 shows
that the standard deviation of the GA’s set of final fitnesses
was 245.17, whereas the standard deviation of the BSO’s final
fitnesses was 1105.43. The differences in final average fitnesses
between the GA and RFO were statistically significant with a
one-tailed P < 0.0001. The standard deviation for RFO final
solutions was 1298.26. These statistically significant results
provide evidence that the GA more reliably produces higher
quality 3D micro.

B. Evolved 3D Micro Behavior

We are also interested in the highest fitness 3D micro
behavior generated by the search algorithms. The parameters
for evolved Vultures in Table II produced by the GA results in
a score of 9260, the highest score found. The behavior created



by these parameters enabled friendly Vultures to spread across
the map and split enemy units into smaller subgroups, thus
decreasing the concentrated firepower of the more numerous
enemy group so our units do not become overwhelmed. Figure
5 shows a screen shot of the skirmish that illustrates our
Vulture’s 3D micro behavior. The parameters specifying PF
values show that our units were strongly attracted towards
enemy units with small repulsion, allowing friendly units to
strike closely but remain out of the enemy unit’s weapon range.
A low freeze time (St) also allows for units to kite more
frequently and avoid becoming overwhelmed when at stand
still. A maximum value of the HPef parameter demonstrates
that the evolved Vultures did not prefer targeting previously
damaged enemies and instead targeted units closest to them,
preventing potentially dangerous chases through enemy groups
and kiting in quick, successive intervals. Videos of evolved
micro compared with initially generated micro can be found
online at http://www.cse.unr.edu/∼tdewitt/.

TABLE II: Best found solutions for both units.

Unit IMs PFs Reactive control
W R ca cr ea er St Dk Rnt Dkb HPef HPfb

Vultures 14 10 60 13 10 3 2 22 14 4 7 1
Zealots 12 9 55 27 9 2 6 21 10 6 5 7

Fig. 5: Vultures with evolved micro fight smaller fragments of
the enemy group for a higher chance of survival.

C. Generalizability of Evolved 3D Micro Behaviors

We tested the generalizability of our evolved set of pa-
rameters for Vultures found in Table II by applying them to
control vultures in new scenarios. For each side, at its corner,
we randomly generated the unit positions of each side and
averaged the fitnesses over 500 runs. Figure 6 (red bars) shows
the fitness distribution of all 500 runs for this generalizability
test. The average score out of 500 runs is 6391 which is
69.02% of the highest fitness evolved in the original scenario
(9260).

We then further tested the generalizability of the evolved
Vulture micro by randomly generating initial unit positions
anywhere within the map and averaged the scores from each
run. Figure 6 (blue bars) also shows the distribution of fitnesses
over all 500 runs on this scenario. The average fitness is
6588 which is 71.14% of the highest fitness evolved in the
original scenario. Although parameters were evolved on one
specific scenario with fixed initial positions for all units, our

representation leads to behavior that is somewhat generalizable
over other initial positions.

Fig. 6: The evolved 3D micro from our scenario of fitness
9260 generalizes well to new scenarios.

We also apply our solution to new scenarios with fixed
initial positions. Table III details the design and results of the
new scenarios used to test the kiting efficiency of our evolved
Vultures. Scenario 1 starts our 4 evolved Vultures separated
into two subgroups in opposite corners to surround 50 enemy
Zealots placed in the center of the map. Vultures immediately
split the Zealots into two groups with each group moving
towards the closest Vulture subgroup. We lost 1 Vulture early
in the scenario which decreased the overall fire power of
our units for the remaining time duration, resulting in only
19 enemy units destroyed for a fitness of 6160. Scenario 2
places each of the 4 Vultures in each corner with 50 Zealots
placed in the map’s center. Zealots immediately split into four
groups and began to move towards the Vulture closest to them.
Vultures were already separated across the map and quickly
engaged in kiting behaviors, eliminating 35 of the Zealots
with no casualties. This scenario results in a fitness of 8060.
Scenario 3 inverts the previous scenario by placing the Zealots
in the corners and Vultures in the map’s center. Our evolved
Vultures split to individually fight Zealot subgroups at the
beginning of the scenario. We lose 1 Vulture halfway through
the scenario but it was alive long enough to eliminate multiple
enemy units, therefore the loss in overall fire power was not
as severe as if it had been eliminated early on. Our evolved
Vultures still managed to eliminate 31 enemy units, resulting
in a fitness of 7220. Scenario 4 doubles unit numbers and has
8 Vultures versus 100 Zealots. Vultures were able to handle
Zealots well and although we lost 1 Vulture towards the end
of the scenario, the Vultures destroyed 65 Zealots.

The evolved Vultures still engage in some risky behavior
and casualties from this, result in a decrease in overall fire
power for the entire Vulture group and lowers the group’s
tactical effectiveness by a considerable amount. However,
Vultures still perform well by spreading across the map and
kiting Zealot subgroups effectively.

D. Evolving 3D Zealot Micro Behavior

Once we had good Vulture micro, we investigated evolving
3D Zealot micro against these previously evolved Vultures.

http://www.cse.unr.edu/~tdewitt/


TABLE III: Screen shot of initial 3D unit positioning for four
new scenarios.

Scenario Description Results

4 Vultures in
opposite corners
versus
50 Zealots in
center.

Fitness of 6160.
1 friendly
destroyed,
19 enemies
destroyed.

4 Vultures in
each corner
versus 50 Zealots
in center.

Fitness of 8060.
0 friendlies de-
stroyed, 35 ene-
mies destroyed.

4 Vultures in
center versus 50
Zealots divided
into each corner.

Fitness of 7220.
1 friendly
destroyed,
31 enemies
destroyed.

8 Vultures versus
100 Zealots.

Fitness of 14080
1 friendly
destroyed,
65 enemies
destroyed.

To do so we replicated the same set of experiments with the
same map rules while swapping unit sides, therefore our new
scenario now consists of 50 friendly Zealots fighting 4 enemy
Vultures controlled by the highest performing micro in Table II
found in our original scenario. We also modify our fitness
function to better suite the objective of melee attack units in
our new scenario. The new evaluation function is:

F =

{
(Deu × 100) + (Nfu × 100), if Neu = 0

(Deu × 100) + (Nfu × 10), otherwise

where Deu represents damage, the sum of enemy unit casual-
ties. Nfu and Neu are the number of friendly units and number
of enemy units remaining at the end of the scenario. With this
fitness function there is only one way to achieve a particular
fitness. For example, a fitness of 4300 indicates that all enemy
units were destroyed with 39 friendly units remaining. This
conditional fitness function is to guide search algorithms in
evolving micro that eliminates all enemy units first in order
to avoid evolving passive micro. Again, in future work, we
plan to use multi-objective evolutionary algorithms that try to
maximize damage done and minimize damage received as the
two criteria to be pareto-optimized.

For this scenario, the theoretical maximum score for the
scenario is 5400. This is obtained by eliminating all of the
enemy units (400) and retaining all friendly units (5000).
Figure 7 shows that we are able to evolve Zealots to fight and
win against evolved Vultures in this specific scenario. The GA
found solutions that were able to eliminate all enemy units in
22 of 30 runs for an average max fitness of 3451. The highest
fitness obtained is 5000, which destroyed all 4 enemy Vulture
units while losing 4 of 50 friendly Zealot units.

Fig. 7: Average performance of GA for our scenario with 30
different random seeds. X-axis represents number of evalua-
tions and Y-axis shows the average fitness at that evaluation.

The GA was able to generate high quality solutions for
melee versus ranged units by having Zealots concentrate
firepower as a group on one enemy Vulture at a time, reducing
the overall effectiveness of the enemy group with each unit
eliminated. Instead of kiting, Zealots learn to rush one Vulture
at a time as a means to overwhelm and quickly eliminate
this Vulture. Zealots do not evolve kiting behaviors due to
their inability to outrun enemy Vultures and instead develop
more aggressive, risky behavior to destroy ranged enemy units.
Rather than spacing out to fight smaller subgroups of enemy
units, Zealots collectively form a condensed group and focus
firepower on one enemy unit at a time. The fewer number
of Vultures alive, the higher the number of Zealots that stay
alive as the skirmish continues. This provides an incentive
for Zealots to eliminate Vultures quickly to avoid prolonged
skirmishes that lead to more Zealot casualties later in the
scenario. A low repulsive PF evolves and allows Zealots to
move into a more compact group which permits rushing with
the concentrated firepower needed to eliminate ranged enemy
units. Table II lists the evolved parameter values for the best
evolved Zealot.

Further experiments in testing the generalizability of
evolved 3D Zealot micro concludes that there exists limitations
in our representation for evolving micro of this specific unit
type. Kiting behaviors do not apply well to these melee units
when fighting ranged units and our representation of micro
does not incorporate effective melee micro parameters (i.e.
flanking).

V. CONCLUSION AND FUTURE WORK

This paper extends prior work in generating two dimen-
sional micro for Real-Time Strategy games to three dimen-
sions. We use influence maps and potential fields to coordinate
group positioning and unit movement during skirmishes. Unit
group behavior is represented as a set of parameters that
define an influence map, an attractive and a repulsive potential
field, and reactive controls while limiting the search space for
our search algorithms to 251. Results show that the genetic
algorithm and two hillclimbers can find parameter values that
lead to high fitness correlated with good micro. However,
the genetic algorithm more reliably and more quickly finds



higher fitness parameter values. Both hill climbers find good
solutions between 40% and 60% of the time, while the genetic
algorithm finds high quality solution a 100% of the time. These
results are statistically significant. For ranged versus melee unit
combat, ranged units see higher effectiveness when the group
becomes more spread and splits enemy firepower. Moreover,
ranged units kite efficiently by attacking enemy units while
avoiding being within enemy weapon’s range. Conversely,
evolved melee units can successfully eliminate ranged units
by concentrating fire on one unit at a time, quickly reducing
the overall effectiveness of the enemy group with each unit
destroyed. Our evolved Vultures exploit opposing melee units
(Zealots) in every scenario by slicing enemy units into smaller
groups to avoid becoming overwhelmed and then kiting till
skirmish-time runs out. Results also show that although our
evolved 3D ranged unit (Vulture) micro generalize well to new
scenarios, our evolved 3D Zealot micro does not generalize as
well to other scenarios.

We are interested in evolving effective 3D micro for melee
units against ranged units with appropriate representations of
melee micro behaviors. We plan to investigate simplifying the
fitness functions by turning to a multi-objective formulation of
the problem and using multi-objective evolutionary algorithms.
Techniques such as case-injection or other knowledge-based
systems may be added to our system in future research
to further investigate speed, quality, and generalizability of
our representation and evolved solutions. We are also inter-
ested in co-evolving micro for rather than evolving micro
against a fixed opponent. Essentially, we manually did one
co-evolutionary cycle when evolving Zealot micro against our
prior evolved Vultures. Finally, we plan to investigate evolving
multi-unit micro with more complex unit interactions.
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